Gelation‐Constrained Freeze‐Casting Fabrication of Ultra‐Homogeneous Nanocomposite Aerogels with Superelasticity and Harsh Environment Tolerance

Pseudoelasticity Biocompatibility
DOI: 10.1002/adfm.202503693 Publication Date: 2025-03-18T15:43:11Z
ABSTRACT
Abstract Freeze casting is a versatile technique for organizing low‐dimensional building blocks into ordered porous structural materials. However, the freeze‐casting fabrication of materials with robust and topologically elastic skeleton to withstand harsh conditions challenging. Herein, silanized ultra‐homogeneous nanocomposite aerogel fabricated using gelation‐constrained strategy. Diverging from traditional methods employing solution precursor, approach involves process utilizing rational‐designed supramolecular hydrogel as quasi‐solid precursor. The within hydrogel, enclosed in dense hydrogen‐bonded network, effectively mitigate secondary agglomeration caused by ice crystallization concentration enrichment during freeze‐casting. By forming cellular an interconnected nanoparticle resulting aerogels exhibit exceptional mechanical elasticity retaining over 98% height after 10 000 compression cycles, along superior electrical properties showing 78.9% increase conductivity compared conventional aerogels. Wearable piezoresistive sensors these demonstrate outstanding force sensing capabilities, broad linear range (0–17.6 kPa) high sensitivity (1.32 kPa −1 ). When integrated intermediate layer protective garments, offer insulation fire resistance, enabling them endure like repetitive extreme deformations, exposure high‐temperature flames, water‐erosion damages.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (0)