Erasable, Rewritable, and Reprogrammable Dual Information Encryption Based on Photoluminescent Supramolecular Host–Guest Recognition and Hydrogel Shape Memory

DOI: 10.1002/adma.202301300 Publication Date: 2023-06-26T11:24:36Z
ABSTRACT
Information encryption technologies are very important for security, health, commodity, and communications, etc. Novel information mechanisms materials desired to achieve multimode reprogrammable encryption. Here, a supramolecular strategy is demonstrated multimodal, erasable, reprogrammable, reusable by reversibly modulating fluorescence. A butyl-naphthalimide with flexible ethylenediamine functionalized β-cyclodextrin (N-CD) utilized as fluorescent responsive ink printing or patterning on polymer brushes dangling adamantane group grafted hydrogels. The photoluminescent naphthalimide moiety bonded β-CD entrapped in the cavity. Its fluorescence highly weakened cavity recovers after being expelled from competing guest molecule emit bright green photoluminescence under UV. Experiments theoretical calculations suggest π-π stacking ICT primary mechanism naphthalimides assembly fluorescence, which can be quenched through insertion of conjugated molecules recover removing insert. Such reversible quenching recovering used repeated writing, erasing, re-writing information. Supramolecular recognition hydrogel shape memory further combined dual-encryption. This study provides novel develop smart improved security broad applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (61)
CITATIONS (47)