High‐Entropy Alloy Nanowires for Efficient and Durable Hydrogen Oxidation Reaction
High-Entropy Alloys
DOI:
10.1002/adsu.202500381
Publication Date:
2025-04-24T13:05:27Z
AUTHORS (10)
ABSTRACT
Abstract High‐entropy alloy nanowires (HEA NWs) hold significant promise for achieving exceptional catalytic activity and stability, owing to their unique 1D morphology the electronic engineering potential of HEAs. However, controlled synthesis HEA NWs remains a challenge. In this work, novel wet‐chemical approach is reported ultrathin NWs, represented by PtRuNiCuPb, through an active‐hydrogen (H·)‐mediated reduction mechanism. The H· species, generated organic dehydrogenation, facilitate effective co‐reduction metal salts with differing potentials, while mild conditions ensure control toward nanowire formation. resulting PtRuNiCuPb exhibit remarkable in electrocatalytic hydrogen oxidation reaction (HOR) alkaline media, due multimetallic compositions abundant grain boundaries. At 50 mV, specific mass activities reach 8.46 mA cm −2 5.54 A mg Pt+Ru −1 , respectively, ≈11.3 14.5 times greater than those commercial Pt/C. Thanks morphology, demonstrate excellent retaining 97% initial after 20000 cycles accelerated durability testing. These findings offer promising strategy designing highly efficient durable catalysts using morphologies applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....