Neutrophil‐Targeting Semiconducting Polymer Nanotheranostics for NIR‐II Fluorescence Imaging‐Guided Photothermal‐NO‐Immunotherapy of Orthotopic Glioblastoma
0301 basic medicine
Polymers
Neutrophils
Photothermal Therapy
Science
Nitric Oxide
Theranostic Nanomedicine
Mice
03 medical and health sciences
fluorescence imaging
Cell Line, Tumor
Animals
Humans
semiconducting polymer
Brain Neoplasms
Q
Optical Imaging
glioblastoma
Phototherapy
Disease Models, Animal
Semiconductors
cancer theranostics
immunotherapy
Immunotherapy
Glioblastoma
Research Article
DOI:
10.1002/advs.202406750
Publication Date:
2024-08-19T17:54:50Z
AUTHORS (6)
ABSTRACT
AbstractGlioblastoma (GBM) is one of the deadliest primary brain tumors, but its diagnosis and curative therapy still remain a big challenge. Herein, neutrophil‐targeting semiconducting polymer nanotheranostics (SSPNiNO) is reported for second near‐infrared (NIR‐II) fluorescence imaging‐guided trimodal therapy of orthotopic glioblastoma in mouse models. The SSPNiNO are formed based on two semiconducting polymers acting as NIR‐II fluorescence probe as well as photothermal conversion agent, respectively. A thermal‐responsive nitric oxide (NO) donor and an adenosine 2A receptor (A2AR) inhibitor are co‐integrated into SSPNiNO to enable trimodal therapeutic actions. SSPNiNO are surface attached with a neutrophil‐targeting ligand to mediate their effective delivery into orthotopic GBM sites via a “Trojan Horse” manner, enabling high‐sensitive NIR‐II fluorescence imaging. Upon NIR‐II light illumination, SSPNiNO effectively generates heat via NIR‐II photothermal effect, which not only kills tumor cells and induces immunogenic cell death (ICD), but also triggers controlled NO release to strengthen tumor ICD. Additionally, the encapsulated A2AR inhibitor can modulate immunosuppressive tumor microenvironment by blocking adenosine‐A2AR pathway, which further boosts the antitumor immunological effect to observably suppress the orthotopic GBM progression. This study can provide a multifunctional theranostic nanoplatform with cumulative therapeutic actions for NIR‐II fluorescence imaging‐guided effective GBM treatment.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (64)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....