2,2′‐Bipyridyl‐4,4′‐Dicarboxylic Acid Modified Buried Interface of High‐Performance Perovskite Solar Cells
Dicarboxylic acid
Interface (matter)
DOI:
10.1002/ange.202418176
Publication Date:
2024-10-15T06:03:54Z
AUTHORS (8)
ABSTRACT
Abstract The regulation of interfaces remains a critical and challenging aspect in the pursuit highly efficient stable perovskite solar cells (PSCs). Here, 2,2′‐bipyridyl‐4,4′‐dicarboxylic acid ( HBPDC ) is incorporated as an interfacial layer between SnO 2 layers PSCs. two carboxylic moieties on bind to through esterification, while its nitrogen atoms, possessing lone electron pairs, interact with uncoordinated lead (Pb 2+ atoms Lewis acid‐base interactions. This dual functionality enables simultaneous passivation surface defects both buried layers. In addition, electron‐deficient nature enhances energy band alignment facilitates transfer from . Furthermore, incorporation strengthens adhesion, improving mechanical reliability. As result, PSCs exhibited impressive power conversion efficiency (PCE) 25.41 % under standard AM 1.5G conditions, along remarkable environmental stability.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....