Three in One: Temperature, Solvent and Catalytic Stability by Engineering the Cofactor‐Binding Element of Amine Transaminase
0106 biological sciences
Binding Sites
Propylamines
Temperature
Water
Protein Engineering
01 natural sciences
Pyridoxal Phosphate
Enzyme Stability
Solvents
Transition Temperature
Dimethyl Sulfoxide
Protein Structure, Quaternary
Pyridoxamine
Transaminases
DOI:
10.1002/cbic.201700236
Publication Date:
2017-05-04T02:22:52Z
AUTHORS (6)
ABSTRACT
AbstractAmine transaminase (ATA) catalyse enantioselectively the direct amination of ketones, but insufficient stability during catalysis limits their industrial applicability. Recently, we revealed that ATAs suffer from substrate‐induced inactivation mechanism involving dissociation of the enzyme–cofactor intermediate. Here, we report on engineering the cofactor‐ring‐binding element, which also shapes the active‐site entrance. Only two point mutations in this motif improved temperature and catalytic stability in both biphasic media and organic solvent. Thermodynamic analysis revealed a higher melting point for the enzyme–cofactor intermediate. The high cofactor affinity eliminates the need for pyridoxal 5′‐phosphate supply, thus making large‐scale reactions more cost effective. This is the first report on stabilising a tetrameric ATA by mutating a single structural element. As this structural “hotspot” is a common feature of other transaminases it could serve as a general engineering target.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....