How Long Does a Photoreceptor Cell Take to Die? Implications for the Causative Cell Death Mechanisms
Photoreceptor cell
Zaprinast
DOI:
10.1007/978-1-4614-3209-8_73
Publication Date:
2014-03-24T07:46:47Z
AUTHORS (7)
ABSTRACT
The duration of cell death may allow deducing the underlying degenerative mechanism. To find out how long a photoreceptor takes to die, we used the rd1 mouse model for retinal neurodegeneration, which is characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cGMP levels. Based on cellular data on the progression of cGMP accumulation, cell death, and survival, we created a mathematical model to simulate the temporal development of the degeneration and the clearance of dead cells. Both cellular data and modelling suggested that at the level of the individual cell, the degenerative process was rather slow, taking around 80 h to complete. Organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast, confirmed the surprisingly long duration of an individual photoreceptor cell's death. We briefly discuss the possibility to link different cell death stages and their temporal progression to specific enzymatic activities known to be causally connected to cell death. This in turn opens up new perspectives for the treatment of inherited retinal degeneration, both in terms of therapeutic targets and temporal windows-of-opportunity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (17)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....