Linear evasion differential game of one evader and several pursuers with integral constraints
Statistics and Probability
Economics and Econometrics
0209 industrial biotechnology
Mathematics (miscellaneous)
02 engineering and technology
Statistics, Probability and Uncertainty
Energy Research
101017 Game theory
101017 Spieltheorie
Social Sciences (miscellaneous)
DOI:
10.1007/s00182-021-00760-6
Publication Date:
2021-02-11T17:03:49Z
AUTHORS (4)
ABSTRACT
Abstract An evasion differential game of one evader and many pursuers is studied. The dynamics state variables $$x_1,\ldots , x_m$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mi>m</mml:mi> </mml:mrow> </mml:math> are described by linear equations. control functions players subjected to integral constraints. If $$x_i(t) \ne 0$$ <mml:mi>i</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> for all $$i \in \{1,\ldots ,m\}$$ <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mo>}</mml:mo> $$t \ge <mml:mo>≥</mml:mo> then we say that possible. It assumed the total energy doesn’t exceed evader. We construct an strategy prove any positive integer m
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....