Linear evasion differential game of one evader and several pursuers with integral constraints

Statistics and Probability Economics and Econometrics 0209 industrial biotechnology Mathematics (miscellaneous) 02 engineering and technology Statistics, Probability and Uncertainty Energy Research 101017 Game theory 101017 Spieltheorie Social Sciences (miscellaneous)
DOI: 10.1007/s00182-021-00760-6 Publication Date: 2021-02-11T17:03:49Z
ABSTRACT
Abstract An evasion differential game of one evader and many pursuers is studied. The dynamics state variables $$x_1,\ldots , x_m$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mi>m</mml:mi> </mml:mrow> </mml:math> are described by linear equations. control functions players subjected to integral constraints. If $$x_i(t) \ne 0$$ <mml:mi>i</mml:mi> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>0</mml:mn> for all $$i \in \{1,\ldots ,m\}$$ <mml:mo>∈</mml:mo> <mml:mo>{</mml:mo> <mml:mo>}</mml:mo> $$t \ge <mml:mo>≥</mml:mo> then we say that possible. It assumed the total energy doesn’t exceed evader. We construct an strategy prove any positive integer m
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (22)