A smartphone-integrated paper sensing system for fluorescent and colorimetric dual-channel detection of foodborne pathogenic bacteria

Paper Bacteria Reproducibility of Results Biosensing Techniques 01 natural sciences 0104 chemical sciences 3. Good health Systems Integration Spectrometry, Fluorescence Food Microbiology Colorimetry Spectrophotometry, Ultraviolet Smartphone Fluorescent Dyes
DOI: 10.1007/s00216-019-02208-z Publication Date: 2020-01-03T23:02:17Z
ABSTRACT
Infections caused by foodborne microorganisms are a great threat to the global environment and public healthcare today. Thus, rapid, portable and sensitive assays that can realize the identification of foodborne bacteria are highly desired. In this study, a smart fluorescent and colorimetric dual-readout sensing system has been established for simple and rapid E. coli determination by utilizing the Cu2+-triggered oxidation of o-phenylenediamine (OPD). Initially, Cu2+ can oxidize OPD to OPDox, resulting in an orange-yellow fluorescence and visible pale-yellow color. However, E. coli can effectively reduce Cu2+ into Cu+, inhibiting the Cu2+-triggered oxidation of OPD to OPDox. Consequently, the introduction of E. coli can turn off both the fluorescence and the UV-vis absorbance signals of the OPD-Cu2+ system, illustrating an original mechanism for fluorescent and colorimetric dual-channel detection of E. coli. Moreover, a filter paper-based visual sensor was built and coupled with OPD-Cu2+ solution under the assistance of a UV lamp. The as-prepared sensor can detect E. coli quantitatively with the help of a typical smartphone color-scanning application (APP). Thus, this study offers a valid dual-mode assay for sensitive and on-site visible detection of E. coli, guaranteeing the reliability of the results and is more attractive for practical use. Graphical Abstract Schematic illustration of the smartphone-integrated sensing system for fluorescent and colorimetric dual-channel detection of E. coli based on the Cu2+-OPD system.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (57)