Torelli Theorem for the Deligne–Hitchin Moduli Space
Isomorphism (crystallography)
Compact Riemann surface
DOI:
10.1007/s00220-009-0831-3
Publication Date:
2009-05-05T22:04:14Z
AUTHORS (4)
ABSTRACT
Fix integers $g\geq 3$ and $r\geq 2$, with if $g=3$. Given a compact connected Riemann surface $X$ of genus $g$, let $\MDH(X)$ denote the corresponding $\text{SL}(r, {\mathbb C})$ Deligne--Hitchin moduli space. We prove that complex analytic space determines (up to an isomorphism) unordered pair $\{X, \overline{X}\}$, where $\overline{X}$ is defined by opposite almost structure on $X$.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (18)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....