Reducing hand radiation during renal access for percutaneous nephrolithotomy: a comparison of radiation reduction techniques
Surgeons
03 medical and health sciences
0302 clinical medicine
Research
Occupational Exposure
Fluoroscopy
Cadaver
Humans
Nephrolithotomy, Percutaneous
Hand
Radiation Dosage
DOI:
10.1007/s00240-023-01510-x
Publication Date:
2024-01-13T11:02:16Z
AUTHORS (12)
ABSTRACT
AbstractPercutaneous nephrolithotomy confers the highest radiation to the urologist’s hands compared to other urologic procedures. This study compares radiation exposure to the surgeon’s hand and patient’s body when utilizing three different techniques for needle insertion during renal access. Simulated percutaneous renal access was performed using a cadaveric patient and separate cadaveric forearm representing the surgeon’s hand. Three different needle-holding techniques were compared: conventional glove (control), a radiation-attenuating glove, and a novel needle holder. Five 300-s fluoroscopy trials were performed per treatment arm. The primary outcome was radiation dose (mSv) to the surgeon’s hand. The secondary outcome was radiation dose to the patient. One-way ANOVA and Tukey’s B post-hoc tests were performed with p < 0.05 considered significant. Compared to the control (3.92 mSv), both the radiation-attenuating glove (2.48 mSv) and the needle holder (1.37 mSv) reduced hand radiation exposure (p < 0.001). The needle holder reduced hand radiation compared to the radiation-attenuating glove (p < 0.001). The radiation-attenuating glove resulted in greater radiation produced by the C-arm compared to the needle holder (83.49 vs 69.22 mGy; p = 0.019). Patient radiation exposure was significantly higher with the radiation-attenuating glove compared to the needle holder (8.43 vs 7.03 mSv; p = 0.027). Though radiation-attenuating gloves decreased hand radiation dose by 37%, this came at the price of a 3% increase in patient exposure. In contrast, the needle holder reduced exposure to both the surgeon’s hand by 65% and the patient by 14%. Thus, a well-designed low-density needle holder could optimize radiation safety for both surgeon and patient.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (4)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....