OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants
Genetically modified rice
Dephosphorylation
DOI:
10.1007/s00299-011-1220-x
Publication Date:
2012-01-04T08:10:00Z
AUTHORS (11)
ABSTRACT
Dephosphorylation plays a pivotal role in regulating plant growth, development and abiotic/biotic stress responses. Here, we characterized a plant and fungi atypical dual-specificity phosphatase (PFA-DSP) subfamily member, OsPFA-DSP1, from rice. OsPFA-DSP1 was determined to be a functional protein tyrosine phosphatase (PTP) in vitro using phosphatase activity assays. Quantitative real-time PCR and GENEVESTIGATOR analysis showed that OsPFA-DSP1 mRNA was induced by drought stress. Transfection of rice protoplasts showed that OsPFA-DSP1 accumulated in both the cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP1 in tobacco increased sensitivity to drought stress and insensitivity to ABA-induced stomatal closure and inhibition of stomatal opening. Furthermore, overexpression of OsPFA-DSP1 in rice also increased sensitivity to drought stress. These results indicated that OsPFA-DSP1 is a functional PTP and may act as a negative regulator in drought stress responses.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....