Automated MR-based lung volume segmentation in population-based whole-body MR imaging: correlation with clinical characteristics, pulmonary function testing and obstructive lung disease
Male
Vital Capacity
Pulmonary Disease, Chronic Obstructive
03 medical and health sciences
0302 clinical medicine
Magnetic Resonance Imaging ; Whole-body Imaging ; Computer-assisted Image Analysis ; Pulmonary Function Test ; Obstructive Lung Disease
Forced Expiratory Volume
Image Processing, Computer-Assisted
Humans
Prospective Studies
Lung
Aged
Smoking
Total Lung Capacity
Middle Aged
Magnetic Resonance Imaging
Respiratory Function Tests
3. Good health
Residual Volume
Spirometry
Case-Control Studies
Female
Lung Volume Measurements
Algorithms
DOI:
10.1007/s00330-018-5659-9
Publication Date:
2018-08-27T08:27:24Z
AUTHORS (11)
ABSTRACT
Whole-body MR imaging is increasingly utilised; although for lung dedicated sequences are often not included, the chest is typically imaged. Our objective was to determine the clinical utility of lung volumes derived from non-dedicated MRI sequences in the population-based KORA-FF4 cohort study.400 subjects (56.4 ± 9.2 years, 57.6% males) underwent whole-body MRI including a coronal T1-DIXON-VIBE sequence in inspiration breath-hold, originally acquired for fat quantification. Based on MRI, lung volumes were derived using an automated framework and related to common predictors, pulmonary function tests (PFT; spirometry and pulmonary gas exchange, n = 214) and obstructive lung disease.MRI-based lung volume was 4.0 ± 1.1 L, which was 64.8 ± 14.9% of predicted total lung capacity (TLC) and 124.4 ± 27.9% of functional residual capacity. In multivariate analysis, it was positively associated with age, male, current smoking and height. Among PFT indices, MRI-based lung volume correlated best with TLC, alveolar volume and residual volume (RV; r = 0.57 each), while it was negatively correlated to FEV1/FVC (r = 0.36) and transfer factor for carbon monoxide (r = 0.16). Combining the strongest PFT parameters, RV and FEV1/FVC remained independently and incrementally associated with MRI-based lung volume (β = 0.50, p = 0.04 and β = - 0.02, p = 0.02, respectively) explaining 32% of the variability. For the identification of subjects with obstructive lung disease, height-indexed MRI-based lung volume yielded an AUC of 0.673-0.654.Lung volume derived from non-dedicated whole-body MRI is independently associated with RV and FEV1/FVC. Furthermore, its moderate accuracy for obstructive lung disease indicates that it may be a promising tool to assess pulmonary health in whole-body imaging when PFT is not available.• Although whole-body MRI often does not include dedicated lung sequences, lung volume can be automatically derived using dedicated segmentation algorithms • Lung volume derived from whole-body MRI correlates with typical predictors and risk factors of respiratory function including smoking and represents about 65% of total lung capacity and 125% of the functional residual capacity • Lung volume derived from whole-body MRI is independently associated with residual volume and the ratio of forced expiratory volume in 1 s to forced vital capacity and may allow detection of obstructive lung disease.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....