Fabrication of completely filled carbon nanotubes with copper nanowires in a confined space

02 engineering and technology 0210 nano-technology
DOI: 10.1007/s00339-009-5339-3 Publication Date: 2009-07-13T18:59:31Z
ABSTRACT
Carbon nanotubes (CNTs) filled completely with polycrystalline Cu nanowires were synthesized by laser vaporization of Cu and graphite under high-pressure Ar gas atmosphere. Depending on the Ar gas pressure (0.1–0.9 MPa) and the Cu content (1–40 at.%) in graphite targets for laser vaporization, various products with different morphologies were observed by scanning and transmission electron microscopy. The ratios of the Cu-filled CNTs and carbon nanocapsules particularly increased as Ar gas pressure was increased. The maximum ∼60% fraction of Cu-filled CNTs with outer diameter of 10–50 nm and length of 0.3–3 μm was achieved at 0.9 MPa from graphite containing 20 at.% Cu. Most of the encapsulated Cu-nanowires were surrounded by single, double, or triple graphitic layers. Although the yield of the Cu-filled CNTs was also dependent on the Cu content in the graphite targets, no unfilled CNTs were produced even for low Cu content. The growth of Cu-filled CNTs is explained by the formation of molten Cu–C composite particles with an unusually C-rich composition in a space confined by high-pressure Ar gas, followed by precipitating Cu and C from the particles and subjecting them to phase separation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....