An effective method for calculating phase-matching conditions in biaxial crystals

0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology
DOI: 10.1007/s00340-015-6129-6 Publication Date: 2015-05-13T15:49:36Z
ABSTRACT
We present an effective method for calculating phase-matching conditions in biaxial crystals, especially for nonlinear orthorhombic crystals. Exploiting the angle definition introduced by Japanese mathematician Kodaira Kunihiko, we deduce the angular relations in geometry and obtain the expressions of refractive indices depending on angular orientation of wave vector k and optical axis angle. Then, we directly calculate the phase-matching conditions with BIBO crystal in spontaneous parametric down-conversion (SPDC) process and gain the optimum phase matching schemes for the type I and type II. On its basis, we discuss the angular gradients of the pump and emission wave refractive index near the exact phase matching direction and compare the SPDC with double-frequency process in geometrical relations of the refractive index ellipsoids. This method based on angle-dependent refractive index can be applied to three-wave interactions. It is convenient to calculate the phase matching parameters without solving the quadratic Fresnel equations.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....