VC-Dimension of Hyperplanes Over Finite Fields
Hyperplane
DOI:
10.1007/s00373-025-02909-6
Publication Date:
2025-03-15T11:35:13Z
AUTHORS (11)
ABSTRACT
Abstract
Let
$$\mathbb {F}_q^d$$
F
q
d
be the d-dimensional vector space over the finite field with q elements. For a subset
$$E\subseteq \mathbb {F}_q^d$$
E
⊆
F
q
d
and a fixed nonzero
$$t\in \mathbb {F}_q$$
t
∈
F
q
, let
$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$
H
t
(
E
)
=
{
h
y
:
y
∈
E
}
, where
$$h_y:E\rightarrow \{0,1\}$$
h
y
:
E
→
{
0
,
1
}
is the indicator function of the set
$$\{x\in E: x\cdot y=t\}$$
{
x
∈
E
:
x
·
y
=
t
}
. Two of the authors, with Maxwell Sun, showed in the case
$$d=3$$
d
=
3
that if
$$|E|\ge Cq^{\frac{11}{4}}$$
|
E
|
≥
C
q
11
4
and q is sufficiently large, then the VC-dimension of
$$\mathcal {H}_t(E)$$
H
t
(
E
)
is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of
$$\mathcal {H}_t(E)$$
H
t
(
E
)
is d whenever
$$E\subseteq \mathbb {F}_q^d$$
E
⊆
F
q
d
with
$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$
|
E
|
≥
C
d
q
d
-
1
d
-
1
.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (23)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....