VC-Dimension of Hyperplanes Over Finite Fields

Hyperplane
DOI: 10.1007/s00373-025-02909-6 Publication Date: 2025-03-15T11:35:13Z
ABSTRACT
Abstract Let $$\mathbb {F}_q^d$$ F q d be the d-dimensional vector space over the finite field with q elements. For a subset $$E\subseteq \mathbb {F}_q^d$$ E ⊆ F q d and a fixed nonzero $$t\in \mathbb {F}_q$$ t ∈ F q , let $$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y ∈ E } , where $$h_y:E\rightarrow \{0,1\}$$ h y : E → { 0 , 1 } is the indicator function of the set $$\{x\in E: x\cdot y=t\}$$ { x ∈ E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case $$d=3$$ d = 3 that if $$|E|\ge Cq^{\frac{11}{4}}$$ | E | ≥ C q 11 4 and q is sufficiently large, then the VC-dimension of $$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of $$\mathcal {H}_t(E)$$ H t ( E ) is d whenever $$E\subseteq \mathbb {F}_q^d$$ E ⊆ F q d with $$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | ≥ C d q d - 1 d - 1 .
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (23)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....