Effects of different phosphorus-efficient legumes and soil texture on fractionated rhizosphere soil phosphorus of strongly weathered soils
Bulk soil
Lupinus
DOI:
10.1007/s00374-015-1082-4
Publication Date:
2015-12-04T04:24:32Z
AUTHORS (6)
ABSTRACT
Phosphorus (P) deficiency is one of the largest constraints to crop production in tropical Africa; so, it is necessary to better exploit soil P resources through increasing labile soil P using P-efficient plants. The aim of this study was to evaluate the effect of various P-efficient legumes on fractionated rhizosphere soil P in two contrasting textured soils of Tanzania, i.e., strongly weathered soils. We conducted a 30-day pot experiment, where white lupin (Lupinus albus L.; WL), cowpea (Vignaungui culate L.; CP), and pigeon pea (Cajanus cajan L.: PP) were grown with and without N application (0 and 50 kg N ha−1). Plant growth, P uptake, rhizosphere pH, and fractionated soil P were investigated. Plant P uptake decreased in the following order: WL > CP > PP in clayey soil and CP > PP > WL in sandy soil. We observed clear effects of all legumes on the rhizosphere soil P dynamics of all fractions in both soils, except for the labile P fraction in clayey soil. The effect of legume growth on the contents of less labile inorganic P fraction (NaOH-Pi) was significantly different between legumes; NaOH-Pi contents of WL was significantly lower than those of CP and PP. All legumes substantially increased the less labile organic P fraction, and its ratio was significantly higher in sandy soil. Our results suggest that WL had different P mobilization characteristics from CP and PP and that the effect of P-efficient legume cultivation on soil P availability should be more important in the inherently P poor sandy soil than in clayey soil.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (19)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....