Sequential actions of pectinases and cellulases during secretory cavity formation in Citrus fruits

Middle lamella
DOI: 10.1007/s00468-008-0250-7 Publication Date: 2008-07-24T06:22:17Z
ABSTRACT
Pectinase and cellulase activities are involved in a number of intercellular space-forming processes in plants. In this study, we combined cytochemistry with ultrastructural analysis to investigate the ontogeny of secretory cavity in fruits of Citrus medica L. var. sarcodactylis (Noot.) Swingle, Citrus reticulata Blanco and Citrus limon (L.) Burm. f. Pectinase activity was first detectable at the initial stage of cavity formation, peaked at the intercellular space-forming stage, and diminished at the following stages. In comparison, no cellulase activity was detected until the early lumen-expanding stage. The cellulase activity increased at the late lumen-expanding stage and culminated at the near-mature stage. In the fruit of C. medica var. sarcodactylis, the distribution of pectinase and cellulase reaction products was restricted to the endoplasmic reticulum (ER), the vesicles derived from ER and the cell wall. We also observed that multivesicular structure containing the pectinase reaction product at the initial stage of cavity formation. Our results suggest that pectinase and cellulase are synthesized on ER and secreted directly into the cell wall through exocytosis of ER-derived vesicles. Our observations are consistent with the notion that the secretory cavity in Citrus fruits is formed through a schizolysigenous process in which pectinase activity is involved in the degradation of the middle lamella, whereas cellulase activity is responsible for the degradation of the cell wall.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (23)