A nanozyme-based competitive electrochemical immunosensor for the determination of E-selectin
Immunoassay
Endothelial Cells
Biosensing Techniques
Electrochemical Techniques
02 engineering and technology
Sodium Chloride
Carbon
Humans
Gold
E-Selectin
0210 nano-technology
Copper
DOI:
10.1007/s00604-022-05495-z
Publication Date:
2022-10-06T00:02:46Z
AUTHORS (5)
ABSTRACT
A nanozyme-based competitive electrochemical immunosensor has been developed for the quantitative determination of E-selectin, a common adhesion molecule expressed by activated endothelial cells. A glassy carbon electrode modified with poly(azure A) and E-selectin antibody (GCE/PAA/Ab) was prepared. Au-CuO nanocomposite-labeled E-selectin, CD62E-Au-CuO, was synthetized, and it could be captured on GCE/PAA/Ab owing to the immunoreaction. The immobilized nanocomposites on GCE/PAA/Ab/CD62E-Au-CuO acted as nanozymes and were involved in the electrocatalytic process that caused the high cathodic peak current. The assembly of GCE/PAA/Ab/CD62E-Au-CuO was inhibited by E-selectin due to the competitive immunoreaction, which resulted in a decrease of the current signal. The cathodic peak current difference at - 0.35 V vs SCE was proportional to the concentration of E-selectin in the range 0.500-500 ng mL-1, and the limit of detection was estimated to be 226 pg mL-1. The cell morphology observation, the cell viability test, and the electrochemical measurement indicate that the injury of human umbilical vein endothelial cells was aggravated, and the release of E-selectin from the injured cells was gradually accelerated when the NaCl content in the growth medium increased.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....