Strain-tuned mechanical, electronic, and optoelectronic properties of two-dimensional transition metal sulfides ZrS2: a first-principles study
01 natural sciences
0104 chemical sciences
DOI:
10.1007/s00894-022-05052-8
Publication Date:
2022-02-19T06:09:42Z
AUTHORS (6)
ABSTRACT
Two-dimensional semiconductor material zirconium disulfide (ZrS2) monolayer is a new promising material with good prospects for nanoscale applications. Recently, a new zirconium disulfide (ZrS2) monolayer with a space group of 59_Pmmn has been successfully predicted. Using first-principles calculations, this new monolayer ZrS2 structure is obtained with stable indirect bandgaps of 0.65 eV and 1.46 eV at the DFT-PBE (HSE06) functional levels, respectively. Strain engineering studies on the ZrS2 monolayer show effective bandgap modulation. The bandgap shows a nearly linear regularity from narrow to wide under strain (ranged from - 6 to + 8%). Young's modulus of elasticity of ZrS2 along the tensile directions (x-axis and y-axis) is 83.63 (N/m) and 63.61 (N/m) with Poisson's ratios of 0.09 and 0.07, respectively. The results of carrier mobility show that the electron mobility along the y-axis can reach 1.32 × 103 cm2 V-1 s-1. Besides, the order of magnitude of the light absorption coefficient in the ultraviolet spectral region is calculated to reach 2.0 × 105 cm-1 for ZrS2 monolayers. Moreover, the bandgap and band edge position of Pmmn-ZrS2 can satisfy the redox potentials of photocatalytic water splitting by strain regulating. The results indicate that the new two-dimensional Pmmn-ZrS2 monolayer is a potential material for photovoltaic devices and photocatalytic water decomposition.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (13)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....