Coupling fluvial processes and landslide distribution toward geomorphological hazard assessment: a case study in a transient landscape in Japan
Denudation
Bedrock
Landform
Landslide mitigation
Lithology
Natural hazard
DOI:
10.1007/s10346-017-0838-3
Publication Date:
2017-05-20T14:37:51Z
AUTHORS (5)
ABSTRACT
This study quantified the relationship among deep-seated gravitational slope deformations (DGSDs), landslides, and river rejuvenation in the upper reaches of the Kumano River in the Kii Mountains of Japan, an area of frequent bedrock landslides. River profiles and hillslope landforms were examined, and high-resolution digital elevation models (DEMs) were used to identify DGSDs and landslides. Many of the deep-seated landslides were associated with rainstorms in 1889 and 2011. Landslide volumes were related to landslide areas on the basis of 52 deep-seated landslides that failed during the 2011 rainfall, providing basic data for landscape denudation and sediment yield. River rejuvenation occurred stepwise, incising moderate relief paleosurfaces and forming two series of knickpoints and V-shaped inner gorges that are up to 400-m deep. More than 65% of DGSDs and 75% of the landslides were located in association with the incised inner gorges along the peripheries of the paleosurfaces or were entirely contained within the inner gorges. DGSDs and landslides associated with the incised inner valley slopes tended to be larger than those developed within the paleosurfaces and may be long-term transient hillslope responses to river incision. Hillslope undercutting caused by rejuvenated river incision may play an important role in long-term slope stability and distribution of mass movements, and could serve as an indicator of landslide hazard.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (55)
CITATIONS (23)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....