Quantification of Cerebral Vascular Autoregulation Immediately Following Resuscitation from Cardiac Arrest
Cerebral autoregulation
Mean arterial pressure
DOI:
10.1007/s10439-023-03210-4
Publication Date:
2023-05-15T15:46:26Z
AUTHORS (7)
ABSTRACT
Cerebral vascular autoregulation is impaired following resuscitation from cardiac arrest (CA), and its quantification may allow assessing CA-induced brain injury. However, hyperemia occurring immediately post-resuscitation limits the application of most metrics that quantify autoregulation. Therefore, to characterize autoregulation during this critical period, we developed three novel metrics based on how the cerebrovascular resistance (CVR) covaries with changes in cerebral perfusion pressure (CPP): (i) θCVR, which quantifies the CVR vs CPP gradient, (ii) a CVR-based transfer function analysis, and (iii) CVRx, the correlation coefficient between CPP and CVR. We tested these metrics in a model of asphyxia induced CA and resuscitation using seven adult male Wistar rats. Mean arterial pressure (MAP) and cortical blood flow recorded for 30 min post-resuscitation via arterial cannulation and laser speckle contrast imaging, were used as surrogates of CPP and cerebral blood flow (CBF), while CVR was computed as the CPP/CBF ratio. Using our metrics, we found that the status of cerebral vascular autoregulation altered substantially during hyperemia, with changes spread throughout the 0-0.05 Hz frequency band. Our metrics push the boundary of how soon autoregulation can be assessed, and if validated against outcome markers, may help develop a reliable metric of brain injury post-resuscitation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....