Parametrized topological complexity of collision-free motion planning in the plane

FOS: Computer and information sciences Geometric Topology (math.GT) 01 natural sciences Obstacle-avoiding collision-free motion Computer Science - Robotics Mathematics - Geometric Topology FOS: Mathematics 55S40, 55M30, 55R80, 70Q05 Parametrized topological complexity Algebraic Topology (math.AT) Mathematics - Algebraic Topology 0101 mathematics Robotics (cs.RO)
DOI: 10.1007/s10472-022-09801-6 Publication Date: 2022-09-08T05:02:47Z
ABSTRACT
AbstractParametrized motion planning algorithms have high degrees of universality and flexibility, as they are designed to work under a variety of external conditions, which are viewed as parameters and form part of the input of the underlying motion planning problem. In this paper, we analyze the parametrized motion planning problem for the motion of many distinct points in the plane, moving without collision and avoiding multiple distinct obstacles with a priori unknown positions. This complements our prior work Cohen et al. [3] (SIAM J. Appl. Algebra Geom. 5, 229–249), where parametrized motion planning algorithms were introduced, and the obstacle-avoiding collision-free motion planning problem in three-dimensional space was fully investigated. The planar case requires different algebraic and topological tools than its spatial analog.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (22)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....