Few-shot out-of-scope intent classification: analyzing the robustness of prompt-based learning
Scope (computer science)
Robustness
DOI:
10.1007/s10489-023-05215-x
Publication Date:
2024-01-06T06:01:41Z
AUTHORS (5)
ABSTRACT
Out-of-scope (OOS) intent classification is an emerging field in conversational AI research. The goal is to detect out-of-scope user intents that do not belong to a predefined intent ontology. However, establishing a reliable OOS detection system is challenging due to limited data availability. This situation necessitates solutions rooted in few-shot learning techniques. For such few-shot text classification tasks, prompt-based learning has been shown more effective than conventionally finetuned large language models with a classification layer on top. Thus, we advocate for exploring prompt-based approaches for OOS intent detection. Additionally, we propose a new evaluation metric, the Area Under the In-scope and Out-of-Scope Characteristic curve (AU-IOC). This metric addresses the shortcomings of current evaluation standards for OOS intent detection. AU-IOC provides a comprehensive assessment of a model's dual performance capacities: in-scope classification accuracy and OOS recall. Under this new evaluation method, we compare our prompt-based OOS detector against 3 strong baseline models by exploiting the metadata of intent annotations, i.e., intent description. Our study found that our prompt-based model achieved the highest AU-IOC score across different data regimes. Further experiments showed that our detector is insensitive to a variety of intent descriptions. An intriguing finding shows that for extremely low data settings (1- or 5-shot), employing a naturally phrased prompt template boosts the detector's performance compared to rather artificially structured template patterns.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....