An Integrated Isotope-Geochemical Approach to Characterize a Medium Enthalpy Geothermal System in India
13. Climate action
0207 environmental engineering
02 engineering and technology
6. Clean water
DOI:
10.1007/s10498-019-09352-z
Publication Date:
2019-04-27T04:09:13Z
AUTHORS (7)
ABSTRACT
The Manuguru geothermal area, situated in the Telangana state, is one of the least explored geothermal fields in India. In this study, the chemical characteristics of the groundwater (thermal and non-thermal waters) are investigated to elucidate the source of the solutes dissolved in the water and to determine the approximate residence time of the thermal waters. The major hydrogeochemical processes controlling the groundwater geochemistry have been deciphered using multivariate statistical analysis, conventional graphical plots and geochemical modelling (PHREEQC). Geochemically different groundwater clusters (bicarbonate type, bicarbonate–chloride type and chloride type) can clearly be identified from the chemometric analysis, i.e. PCA and HCA. Thermal waters are mostly Na–HCO3 type having low EC and TDS compared to non-thermal groundwaters. Silicate weathering and ion exchange mainly contribute to the dissolved ion budget in the groundwater of the study area. The carbon isotopic composition of DIC (δ13C) points to silicate weathering with soil CO2 coming from C3 type of plants. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The low tritium values of the thermal water samples reveal the long circulation time (> 50 years) of the recharging waters. Radiocarbon dating (14C) shows that the approximate residence time of the thermal waters ranges from 9952 to 18,663 year BP (before present).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....