Scale-Free Dynamics in Instantaneous Alpha Frequency Fluctuations: Validation, Test–Retest Reliability and Its Relationship with Task Manipulations
Exponent
DOI:
10.1007/s10548-022-00936-7
Publication Date:
2023-01-07T18:04:41Z
AUTHORS (5)
ABSTRACT
Previous studies showed that scale-free structures and long-range temporal correlations are ubiquitous in physiological signals (e.g., electroencephalography). This is supposed to be associated with optimized information processing in human brain. The instantaneous alpha frequency (IAF) (i.e., the instantaneous frequency of alpha band of human EEG signals) may dictate the resolution at which information is sampled and/or processed by cortical neurons. To the best of our knowledge, no research has examined the scale-free dynamics and potential functional significance of IAF. Here, through three studies (Study 1: 25 participants; Study 2: 82 participants; Study 3: 26 participants), we investigated the possibility that time series of IAF exhibit scale-free property through maximum likelihood based detrended fluctuation analysis (ML-DFA). This technique could provide the scaling exponent (i.e., DFA exponent) on the basis of presence of scale-freeness being validated. Then the test-retest reliability (Study 1) and potential influencing factors (Study 2 and Study 3) of DFA exponent of IAF fluctuations were investigated. Firstly, the scale-free property was found to be inherent in IAF fluctuations with fairly high test-retest reliability over the parietal-occipital region. Moreover, the task manipulations could potentially modulate the DFA exponent of IAF fluctuations. Specifically, in Study 2, we found that the DFA exponent of IAF fluctuations in eye-closed resting-state condition was significantly larger than that in eye-open resting-state condition. In Study 3, we found that the DFA exponent of IAF fluctuations in eye-open resting-state condition was significantly larger than that in visual n-back tasks. The DFA exponent of IAF fluctuations in the 0-back task was significantly larger than in the 2-back and 3-back tasks. The results in studies 2 and 3 indicated that: (1) a smaller DFA exponent of IAF fluctuations should signify more efficient online visual information processing; (2) the scaling property of IAF fluctuations could reflect the physiological arousal level of participants.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....