Deep-learning-based cardiac amyloidosis classification from early acquired pet images
Amyloid light chain (AL); Amyloid transthyretin (ATTR); Cardiac amyloidosis; Convolutional neural network; Deep learning; [18F]-florbetaben
03 medical and health sciences
Deep Learning
0302 clinical medicine
Predictive Value of Tests
Positron Emission Tomography Computed Tomography
Amyloid light chain (AL), Amyloid transthyretin (ATTR), Cardiac amyloidosis, Convolutional neural network, Deep learning; [18F]-florbetaben
Humans
Immunoglobulin Light-chain Amyloidosis
Amyloidosis
3. Good health
DOI:
10.1007/s10554-021-02190-7
Publication Date:
2021-02-19T07:25:38Z
AUTHORS (10)
ABSTRACT
The objective of the present work was to evaluate the potential of deep learning tools for characterizing the presence of cardiac amyloidosis from early acquired PET images, i.e. 15 min after [18F]-Florbetaben tracer injection. 47 subjects were included in the study: 13 patients with transthyretin-related amyloidosis cardiac amyloidosis (ATTR-CA), 15 patients with immunoglobulin light-chain amyloidosis (AL-CA), and 19 control-patients (CTRL). [18F]-Florbetaben PET/CT images were acquired in list mode and data was sorted into a sinogram, covering a time interval of 5 min starting 15 min after the injection. The resulting sinogram was reconstructed using OSEM iterative algorithm. A deep convolutional neural network (CAclassNet) was designed and implemented, consisting of five 2D convolutional layers, three fully connected layers and a final classifier returning AL, ATTR and CTRL scores. A total of 1107 2D images (375 from AL-subtype patients, 312 from ATTR-subtype, and 420 from Controls) have been considered in the study and used to train, validate and test the proposed network. CAclassNet cross-validation resulted with train error mean ± sd of 2.001% ± 0.96%, validation error of 4.5% ± 2.26%, and net accuracy of 95.49% ± 2.26%. Network test error resulted in a mean ± sd values of 10.73% ± 0.76%. Sensitivity, specificity, and accuracy evaluated on the test dataset were respectively for AL-CA sub-type: 1, 0.912, 0.936; for ATTR-CA: 0.935, 0.897, 0.972; for control subjects: 0.809, 0.971, 0.909. In conclusion, the proposed CAclassNet model seems very promising as an aid for the clinician in the diagnosis of CA from cardiac [18F]-Florbetaben PET images acquired a few minutes after the injection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....