Protection of pancreatic β-cell by phosphocreatine through mitochondrial improvement via the regulation of dual AKT/IRS-1/GSK-3β and STAT3/Cyp-D signaling pathways
0301 basic medicine
Glycogen Synthase Kinase 3 beta
Phosphocreatine
Apoptosis
Mitochondria
3. Good health
Oxidative Stress
03 medical and health sciences
Insulin Receptor Substrate Proteins
Peptidyl-Prolyl Isomerase F
Calcium
Reactive Oxygen Species
Proto-Oncogene Proteins c-akt
Signal Transduction
DOI:
10.1007/s10565-021-09644-7
Publication Date:
2021-08-28T19:02:18Z
AUTHORS (17)
ABSTRACT
Diabetes mellitus (DM) is a metabolic syndrome, caused by insufficient insulin secretion or insulin resistance (IR). DM enhances oxidative stress and induces mitochondrial function in different kinds of cell types, including pancreatic β-cells. Our previous study has showed phosphocreatine (PCr) can advance the mitochondrial function through enhancing the oxidative phosphorylation and electron transport ability in mitochondria damaged by methylglyoxal (MG). Our aim was to explore the potential role of PCr as a molecule to protect mitochondria from diabetes-induced pancreatic β-cell injury with insulin secretion deficiency or IR through dual AKT/IRS-1/GSK-3β and STAT3/Cyclophilin D (Cyp-D) signaling pathways. MG-induced INS-1 cell viability, apoptosis, mitochondrial division and fusion, the morphology, and function of mitochondria were suppressed. Flow cytometry was used to detect the production of intracellular reactive oxygen species (ROS) and the changes of intracellular calcium, and the respiratory function was measured by oxygraph-2k. The expressions of AKT, IRS-1, GSK-3β, STAT3, and Cyp-D were detected using Western blot. The result showed that the oxidative stress-related kinases were significantly restored to the normal level after the pretreatment with PCr. Moreover, PCr pretreatment significantly inhibited cell apoptosis, decreased intracellular calcium, and ROS production, and inhibited mitochondrial division and fusion, and increased ATP synthesis damaged by MG in INS-1 cells. In addition, pretreatment with PCr suppressed Cytochrome C, p-STAT3, and Cyp-D expressions, while increased p-AKT, p-IRS-1, p-GSK-3β, caspase-3, and caspase-9 expressions. In conclusion, PCr has protective effect on INS-1 cells in vitro and in vivo, relying on AKT mediated STAT3/ Cyp-D pathway to inhibit oxidative stress and restore mitochondrial function, signifying that PCr might become an emerging candidate for the cure of diabetic pancreatic cancer β-cell damage.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....