Structure and evolution of multiphase composites for 3D printing
0205 materials engineering
02 engineering and technology
DOI:
10.1007/s10853-020-04505-w
Publication Date:
2020-03-02T21:03:52Z
AUTHORS (5)
ABSTRACT
Ethylene-vinyl acetate–glycidyl methacrylate random terpolymer (EVM–GMA, VA = 60 wt%, GMA = 2.9%) was used as a polymeric plasticizer replacing the traditional dioctyl phthalate (DOP) to prepare a polyvinyl chloride (PVC) masterbatch. Polylactic acid (PLA) was applied to blend with the PVC masterbatch in melt to examine the epoxy ring-opening reactions between epoxy groups in EVM–GMA and end carboxyl groups in PLA in order to construct a special phase structure in PVC/PLA improving the mechanical properties and 3D printing performance. The formation and evolution of phase structures were revealed by aids of the unique rheological responses of multi-component composite system. The results showed that with the increase in EVM–GMA content, the phase morphology of PVC/PLA was refined from co-continuous phase structure to denser one and then evolved to sea-island structure. It was also found that the addition of EVM–GMA inhibited the crystallization of PLA and the cold crystallization as well. When PVC/EVM–GMA/PLA was incorporated in weight ratio of 45/5/50, the denser co-continuous phase structure with smaller domain imparted the composite a highest zero shear viscosity and viscous flow activation energy. This unique structure existed stably when the shear rate was less than 230 s−1 or below 180 °C. Consequently, it endowed composite the highest impact strengths and smoothest appearance of 3D printed specimens. Therefore, moderate EVM–GMA is not only a reliable alternative plasticizer for PVC, but also an ideal modifier for the compatibility of PVC/PLA blends which presented an excellent performance in 3D printing.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (16)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....