Van der waals BP/InSe heterojunction for tunneling field-effect transistors
Phosphorene
DOI:
10.1007/s10853-021-05784-7
Publication Date:
2021-02-04T14:04:06Z
AUTHORS (4)
ABSTRACT
Introducing heterogeneous architecture is a prospective way to improve tunneling field-effect transistors (TFETs). We investigate the van der Waals (vdW) heterojunction based on monolayer black phosphorene and indium selenide (BP/InSe heterojunction) and the double-gated 10-nm TFETs based on the vdW BP/InSe heterojunction with the contact length and position by using the ab-initio quantum transport simulations. The vdW BP/InSe heterojunction shows a type-II band edge alignment. The optimal vdW BP/InSe heterojunction TFETs have a 1-nm-length BP/InSe heterojunction at the channel’s left and right sites (1L and 1R for short). Novelty, the BP/InSe heterojunction TFETs with 1L and 1R configurations are n- and p-type devices, respectively, and corresponding high on-currents of 240 and 408 μA/μm are obtained for high-performance application (off-current: 0.1 μA/μm) at a very low supply voltage (0.3 V).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....