Biological evaluation of the modified nano-amorphous phosphate calcium doped with citrate/poly-amino acid composite as a potential candidate for bone repair and reconstruction
Calcium Phosphates
Wound Healing
Bone Regeneration
Tissue Engineering
Polymers
Cell Differentiation
Mesenchymal Stem Cells
01 natural sciences
Citric Acid
0104 chemical sciences
Mice
Coated Materials, Biocompatible
Osteogenesis
Bone Substitutes
Materials Testing
Animals
Rabbits
Amino Acids
Biocompatibility Studies
Cells, Cultured
Cell Proliferation
DOI:
10.1007/s10856-020-06482-7
Publication Date:
2021-01-25T03:03:25Z
AUTHORS (5)
ABSTRACT
AbstractLarge numbers of research works related to fabricating organic–inorganic composite materials have been carried out to mimic the natural structure of bone. In this study, a new modified n-ACP doped with citrate (n-ACP-cit)/poly (amino acids) (PAA) composite (n-ACP-cit/PAA) was synthesized by employing high bioactive n-ACP-cit and the biodegradable and biocompatible PAA copolymer. Its basic structure was characterized by X-ray diffraction spectroscopy, Fourier transformed infrared spectroscopy, and X-ray photoelectron spectroscopy. Moreover, the degradability, bioactivity, biocompatibility, and osteoconductivity of n-ACP-cit/PAA composite were evaluated in vitro and in vivo, using simulated body fluid (SBF) solution soaking test, mouse bone marrow mesenchymal stem cells proliferation and differentiation, morphological observation test, expression of genes associated with osteogenesis, and bone defect model repair test, respectively. The modified n-ACP-cit/PAA composite exhibited a much higher weight loss rate (36.01 wt.%) than that of PAA (23.99 wt.%) after immersing in SBF solution for 16 weeks and the pH values of local environment restored to neutral condition. Moreover, cells co-culturing with composites exhibited higher alkaline phosphatase activity, more calcium nodule-formation, and higher expression levels of osteogenic differentiation-related genes (Bmp-2, Colla I, OCN, OPN, and Runx-2) than that of PAA. Furthermore, the bone defect model repair test revealed that the composite could be intimately incorporated with the surrounding bone without causing any deleterious reaction and capable of guiding new bone formation. Together, these results indicated that the new modified bone repair n-ACP-cit/PAA composite material with specific characteristics may be designed for meeting diverse requirements from biomedical applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (36)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....