Magnetically Separable Fe3O4 Nanoparticles-Decorated Reduced Graphene Oxide Nanocomposite for Catalytic Wet Hydrogen Peroxide Oxidation

02 engineering and technology 0210 nano-technology
DOI: 10.1007/s10904-013-9863-4 Publication Date: 2013-04-30T23:23:36Z
ABSTRACT
Fe3O4 nanoparticles-decorated reduced graphene oxide magnetic nanocomposites (Fe3O4/rGO NCs) were prepared by a facile one-step strategy, and further used as heterogeneous Fenton-like catalysts for catalytic wet hydrogen peroxide oxidation (CWHPO) of methylene blue (MB) at 25 °C and atmospheric pressure. The effects of variables such as the Fe3O4/rGO with the mass ratio of rGO, initial pH, MB concentration and H2O2 dosage were investigated. The Fe3O4/rGO NCs with rGO mass ratio of 10.0 wt % showed the highest H2O2-activating ability, which was six-fold than that of pure Fe3O4 nanoparticles (NPs). The resulting catalysts demonstrated high catalytic activity in a broad operation pH range from 5 to 9, and still retained 90.5 % catalytic activity after reuse in five cycles. Taking advantage of the combined benefits of rGO and magnetic Fe3O4 NPs, these Fe3O4/rGO NCs were confirmed as an efficient heterogeneous Fenton-like catalyst for CWHPO to treat organic pollutants. And a reasonable catalytic mechanism of Fe3O4/rGO NCs was proposed to interpret the degradation process.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (52)