An In Silico Evaluation of Molecular Interaction Between Antimicrobial Peptide Subtilosin A of Bacillus subtilis with Virulent Proteins of Aeromonas hydrophila
Aerolysin
Docking (animal)
Hemolysin
DOI:
10.1007/s10989-021-10203-1
Publication Date:
2021-04-09T05:02:58Z
AUTHORS (6)
ABSTRACT
Subtilosin A, a cyclic peptide from Bacillus subtilis is known for its antimicrobial activity against a diverse range of bacteria. Herein, we report the specific interaction between subtilosin A against virulent proteins of Aeromonas hydrophila through in silico analysis. Aeromonas toxic proteins such as aerolysin and hemolysin were selected from the non-redundant database. The hemolysin protein was designed by homology modelling tool, and it was validated using Ramachandran plot. Then subtilosin A and target toxin proteins were energy minimized for further docking study. The whole docking experiments were done using antibody mode in Cluspro. Subtilosin A building an active interaction with Aeromonas toxins through H-bonds and protein–protein docking analysis revealed that the hemolysin has 6 H-bond interaction towards the antimicrobial target protein subtilosin A than aerolysin, which has 9 H-bonds. The most favourable interacting residues of subtilosin A are Thr6, Cys13, Ile19, Pro20, Asp21, Phe22, Glu23 and Gly35 involving in the strong H-bond formation and proceeds to inhibition of toxin. Hence, the study confirmed that the subtilosin A has more antimicrobial activity to inhibit the Aeromonas toxins by interacting with their binding site residues for preventing extracellular cleavage.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....