Use of a Modified Threshold Function in Fuzzy Cognitive Maps for Improved Failure Mode Identification
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
DOI:
10.1007/s11063-024-11623-y
Publication Date:
2024-05-09T09:02:56Z
AUTHORS (4)
ABSTRACT
AbstractFuzzy cognitive maps (FCMs) provide a rapid and efficient approach for system modeling and simulation. The literature demonstrates numerous successful applications of FCMs in identifying failure modes. The standard process of failure mode identification using FCMs involves monitoring crucial concept/node values for excesses. Threshold functions are used to limit the value of nodes within a pre-specified range, which is usually [0, 1] or [-1, + 1]. However, traditional FCMs using the tanh threshold function possess two crucial drawbacks for this particular.Purpose(i) a tendency to reduce the values of state vector components, and (ii) the potential inability to reach a limit state with clearly identifiable failure states. The reason for this is the inherent mathematical nature of the tanh function in being asymptotic to the horizontal line demarcating the edge of the specified range. To overcome these limitations, this paper introduces a novel modified tanh threshold function that effectively addresses both issues.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....