Let-7f Regulates the Hypoxic Response in Cerebral Ischemia by Targeting NDRG3

Hypoxia
DOI: 10.1007/s11064-016-2091-x Publication Date: 2016-11-03T23:38:05Z
ABSTRACT
microRNAs are a class of non-coding RNAs including approximately 22 nucleotides in length and play a pivotal role in post-transcriptional gene regulation. Currently, the role of miRNAs in the pathophysiology of ischemic stroke has been the subject of recent investigations. In particular, antagomirs to microRNA (miRNA) let-7f have been found to be neuroprotective in vivo, although the detailed function of let-7f during cerebral ischemia has not been fully illustrated. NDRG3 is an N-myc downstream-regulated gene (NDRG) family member that has been observed in the nuclei in most brain cells. Recently, a NDRG3-mediated lactate signaling, in which stabilized NDRG3 protein can promote angiogenesis and cell growth by activating the Raf-ERK pathway in hypoxia was discovered. In this study, we preliminarily explored the change in the expression of the NDRG3 protein which indicated that NDRG3 protein is an oxygen-regulated protein in neurons in rat cerebral ischemia in vivo and in vitro. We further identified let-7f as an upstream regulator of NDRG3 by the lentiviral transfection of rat cortical neurons and the dual luciferase analysis of human genes. In addition, a dual-color fluorescence in situ hybridization assay showed that when the expression of let-7f was elevated, the expression of NDRG3 mRNA was accordingly reduced in rat cerebral ischemia. Taken together, our results identify a new regulatory mechanism of let-7f on NDRG3 expression in the hypoxic response of cerebral ischemia and raise the possibility that the let-7f/NDRG3 pathway may serve as a potential target for the treatment of ischemic stroke.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....