Lattice hydrodynamic model for traffic flow on curved road with passing

0103 physical sciences 01 natural sciences
DOI: 10.1007/s11071-017-3439-8 Publication Date: 2017-03-02T16:52:07Z
ABSTRACT
In order to investigate the effect of passing upon traffic flow on curved road, in this paper, an extended one-dimensional lattice hydrodynamic model for traffic flow on curved road with passing is proposed. The stability condition is obtained by the use of linear stability analysis. The result of stability analysis shows that passing behavior plays an important role in influencing the stability of traffic flow as well as radian of curved road. The nonlinear wave equations including Burgers, Korteweg-de Vries and modified Korteweg-de Vries equations are derived to describe the nonlinear traffic behavior in different regions, respectively. The analytical results show that reducing the coefficient of passing may enhance the stability of traffic flow. Jamming transition occurs between uniform flow and kink jam when the coefficient of passing is less than the critical value. When the coefficient of passing is larger than the critical value, jamming transition occurs from uniform flow to irregular wave through chaotic phase with decreasing sensitivity parameter. In addition, compared with other segments of curved road, traffic flow with passing easily becomes unstable and complicated at the entrance and exit of curved road, especially at the entrance of curved road. The numerical simulations are given to illustrate and clarify the analytical results.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (30)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....