Collective behavior of artificial intelligence population: transition from optimization to game
0103 physical sciences
01 natural sciences
DOI:
10.1007/s11071-018-4649-4
Publication Date:
2019-01-10T11:09:50Z
AUTHORS (6)
ABSTRACT
Collective behavior in the resource allocation systems has attracted much attention, where the efficiency of the system is intimately depended on the self-organized processes of the multiple agents that composed the system. Nowadays, as artificial intelligence (AI) is adopted ubiquitously in decision making in various scenes, it becomes crucial and unavoidable to understand what would emerge in an multi-agent AI systems for resource allocation and how can we intervene the collective behavior there in the future, as we have experience of the possible unexpected outcomes that are induced by collective behavior. Here, we introduce the reinforcement learning (RL) algorithm into minority game (MG) dynamics, in which agents have learning ability based on one typical RL scheme, Q-learning. We investigate the dynamical behaviors of the system numerically and analytically for a different game setting, with combination of two different types of agents which mimic the diversified situations. It is found that through short-term training, the multi-agent AI system adopting Q-learning algorithm relaxes to the optimal solution of the game. Moreover, one striking phenomenon is the transition of interaction mechanism from self-organized optimization to game through tuning the fraction of RL agents $$\eta _{q}$$ . The critical curve for transition between the two mechanisms in phase diagram is obtained analytically. The adaptability of the AI agents population against the time-variable environment is also discussed. To gain further understanding of these phenomena, a theoretical framework with mean-field approximation is also developed. Our findings from the simplified multi-agent AI system may give new enlightenment to how the reconciliation and optimization can be breed in the coming era of AI.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....