Flexible protocol for quantum private query based on B92 protocol

0103 physical sciences 01 natural sciences
DOI: 10.1007/s11128-013-0692-8 Publication Date: 2013-12-05T11:44:59Z
ABSTRACT
Jakobi et al. for the first time proposed a novel and practical quantum private query (QPQ) protocol based on SARG04 (Scarani et al. in Phys Rev Lett 92:057901, 2004) quantum key distribution protocol (Jakobi et al. in Phys Rev A 83:022301, 2011). Gao et al. generalized Jakobi et al's protocol and proposed a flexible QPQ protocol (Gao et al. in Opt Exp 20(16):17411---17420, 2012). When $$\theta <\pi /4$$?<?/4, Gao et al's protocol exhibits better database security than Jakobi et al's protocol, but has a higher probability with which Bob can correctly guess the address of Alice's query. In this paper, we propose a flexible B92-based QPQ protocol. Although SARG04 protocol is a modification of B92 protocol and can be seen as a generalization of B92 protocol, our protocol shows different advantages from Gao et al's protocol. It can simultaneously obtain better database security and a lower probability with which Bob can correctly guess the address of Alice's query when $$\theta <\pi /4$$?<?/4. By introducing entanglement, the proposed QPQ protocol is robust against channel-loss attack, which also implies lower classical communication complexity. Similar to Gao et al's protocol, it is flexible, practical, and robust against quantum memory attack.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (16)
CITATIONS (89)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....