Hydrogen binding property of Co- and Ni-based organometallic compounds
02 engineering and technology
0210 nano-technology
7. Clean energy
DOI:
10.1007/s11224-009-9517-x
Publication Date:
2009-09-23T06:15:35Z
AUTHORS (3)
ABSTRACT
The binding property of hydrogen on organometallic compounds consisting of Co, and Ni transition metal atoms bound to C m H m rings (m = 4, 5) is studied through density functional theory calculation. CoC m H m and NiC m H m complexes can store up to 3.49 wt% hydrogen with an average binding energy of about 1.3 eV. The adsorption characteristics of hydrogen to organometallic compounds are investigated by analyzing vibrational spectra of CoC4H4(H2) n and NiC4H4(H2) n (n = 0, 1, 2). The kinetic stability of these hydrogen-covered organometallic complexes is assured by analyzing the energy gap between the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals. It is also discussed the application of 18-electron rule in predicting maximum number of hydrogen molecules that could be adsorbed by these organometallic compounds.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (27)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....