Dispersal mode, shade tolerance, and phytogeographical affinity of tree species during secondary succession in tropical montane cloud forest
0106 biological sciences
15. Life on land
01 natural sciences
DOI:
10.1007/s11258-011-9980-5
Publication Date:
2011-10-07T19:12:24Z
AUTHORS (3)
ABSTRACT
Secondary succession following land abandonment, represented by a chronosequence of 15 old fields (0–80 years old) and two old-growth forests, was studied in the tropical montane cloud forest region of Veracruz, Mexico. The objective was to determine successional trajectories in forest structure and species richness of trees ≥5 cm DBH, in terms of differences in seed dispersal mode, shade tolerance, and phytogeographical affinity. Data were analyzed using AIC model selection and logistic regressions. Mean and maximum canopy height reached values similar to old-growth forest at 35 and 80 years, respectively. Species richness and diversity values were reached earlier (15 and 25 years, respectively) while basal area and stem density tended to reach old-growth forest values within 80 years. Along the chronosequence, the proportion of species and individuals of wind-dispersed trees declined, that of bird dispersed small seeded trees remained constant, while that of gravity and animal dispersed large seeded trees increased; shade-intolerant species and individuals declined, while intermediate and shade-tolerant trees increased. Shade-tolerant canopy trees were rare during succession, even in the old-growth forest. Tropical tree species were more frequent than temperate ones throughout the chronosequence, but temperate tree individuals became canopy dominants at intermediate and old-growth forest stages.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....