Phytoplankton stoichiometry
Ecological stoichiometry
DOI:
10.1007/s11284-008-0470-8
Publication Date:
2008-03-05T01:26:32Z
AUTHORS (4)
ABSTRACT
AbstractBecause phytoplankton live at the interface between the abiotic and the biotic compartments of ecosystems, they play an important role in coupling multiple nutrient cycles. The quantitative details of how these multiple nutrient cycles intersect is determined by phytoplankton stoichiometry. Here we review some classic work and recent advances on the determinants of phytoplankton stoichiometry and their role in determining ecosystem stoichiometry. First, we use a model of growth with flexible stoichiometry to reexamine Rhee and Goldman's classic chemostat data. We also discuss a recent data compilation by Hall and colleagues that illustrates some limits to phytoplankton flexibility, and a model of physiological adaptation that can account for these results. Second, we use a model of resource allocation to determine the how the optimal nitrogen‐to‐phosphorus stoichiometry depends on the ecological conditions under which species grow and compete. Third, we discuss Redfield's mechanism for the homeostasis of the oceans’ nitrogen‐to‐phosphorus stoichiometry and show its robustness to additional factors such as iron‐limitation and temporal fluctuations. Finally, we suggest areas for future research.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (73)
CITATIONS (134)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....