Dynamic Fluorescence Microscopy of Cellular Uptake of Intercalating Model Drugs by Ultrasound-Activated Microbubbles

Cell Membrane Permeability Cell Survival ENDOCYTOSIS GREEN MEDIATED SONOPORATION confocal microscopy microbubbles Fluorescence DELIVERY 03 medical and health sciences SDG 3 - Good Health and Well-being Cell Line, Tumor Ultrasound Medicine and Health Sciences Journal Article Humans Ultrasonics Organic Chemicals Medicine(all) 0303 health sciences Microbubbles Photobleaching ultrasound REAL-TIME INDUCTION Model drug Biology and Life Sciences Signal Processing, Computer-Assisted IN-VITRO MEMBRANE POROSITY Intercalating Agents Confocal microscopy Kinetics Microscopy, Fluorescence model drug CELLS drug delivery Drug delivery fluorescence Research Article
DOI: 10.1007/s11307-016-1042-x Publication Date: 2017-02-17T14:28:23Z
ABSTRACT
The combination of ultrasound and microbubbles can facilitate cellular uptake of (model) drugs via transient permeabilization of the cell membrane. By using fluorescent molecules, this process can be studied conveniently with confocal fluorescence microscopy. This study aimed to investigate the relation between cellular uptake and fluorescence intensity increase of intercalating model drugs.SYTOX Green, an intercalating fluorescent dye that displays >500-fold fluorescence enhancement upon binding to nucleic acids, was used as a model drug for ultrasound-induced cellular uptake. SYTOX Green uptake was monitored in high spatiotemporal resolution to qualitatively assess the relation between uptake and fluorescence intensity in individual cells. In addition, the kinetics of fluorescence enhancement were studied as a function of experimental parameters, in particular, laser duty cycle (DC), SYTOX Green concentration and cell line.Ultrasound-induced intracellular SYTOX Green uptake resulted in local fluorescence enhancement, spreading throughout the cell and ultimately accumulating in the nucleus during the 9-min acquisition. The temporal evolution of SYTOX Green fluorescence was substantially influenced by laser duty cycle: continuous laser (100 % DC) induced a 6.4-fold higher photobleaching compared to pulsed laser (3.3 % DC), thus overestimating the fluorescence kinetics. A positive correlation of fluorescence kinetics and SYTOX Green concentration was found, increasing from 0.6 × 10-3 to 2.2 × 10-3 s-1 for 1 and 20 μM, respectively. Finally, C6 cells displayed a 2.4-fold higher fluorescence rate constant than FaDu cells.These data show that the temporal behavior of intracellular SYTOX Green fluorescence enhancement depends substantially on nuclear accumulation and not just on cellular uptake. In addition, it is strongly influenced by the experimental conditions, such as the laser duty cycle, SYTOX Green concentration, and cell line.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....