QSAR as a random event: a case of NOAEL

0301 basic medicine No-Observed-Adverse-Effect Level 03 medical and health sciences Molecular Structure Calibration Quantitative Structure-Activity Relationship Environmental Pollutants Models, Theoretical Monte Carlo Method
DOI: 10.1007/s11356-014-3977-2 Publication Date: 2014-12-18T19:35:08Z
ABSTRACT
Quantitative structure-activity relationships (QSAR) for no observed adverse effect levels (NOAEL, mmol/kg/day, in logarithmic units) are suggested. Simplified molecular input line entry systems (SMILES) were used for molecular structure representation. Monte Carlo method was used for one-variable models building up for three different splits into the "visible" training set and "invisible" validation. The statistical quality of the models for three random splits are the following: split 1 n = 180, r (2) = 0.718, q (2) = 0.712, s = 0.403, F = 454 (training set); n = 17, r (2) = 0.544, s = 0.367 (calibration set); n = 21, r (2) = 0.61, s = 0.44, r m (2) = 0.61 (validation set); split 2 n = 169, r (2) = 0.711, q (2) = 0.705, s = 0.409, F = 411 (training set); n = 27, r (2) = 0.512, s = 0.461 (calibration set); n = 22, r (2) = 0.669, s = 0.360, r m (2) = 0.63 (validation set); split 3 n = 172, r (2) = 0.679, q (2) = 0.672, s = 0.420, F = 360 (training set); n = 19, r (2) = 0.617, s = 0.582 (calibration set); n = 21, r (2) = 0.627, s = 0.367, r m (2) = 0.54 (validation set). All models are built according to OCED principles.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (41)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....