Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum
Pectin
Solanum nigrum
Hemicellulose
Uronic acid
DOI:
10.1007/s11356-020-11505-5
Publication Date:
2020-11-17T08:02:51Z
AUTHORS (8)
ABSTRACT
Solanum nigrum is a well-documented cadmium (Cd) hyperaccumulator; however, its Cd-induced tolerance capability and detoxification mechanism remain elusive. Hence, a short-term hydroponic experiment was performed in a multiplane glasshouse to determine the influence of Cd toxicity on subcellular distribution, chemical forms, and the physiological responses of cell wall towards Cd stress in a 4-week-old plant. The experiment was conducted following completely randomized design (CRD) with five treatments (n = 4 replicates). The results showed that Cd stress showed dose-dependent response towards growth inhibition. The subcellular distribution of Cd in S. nigrum was in the order of cell wall > soluble fractions > organelles, and Cd was predominantly extracted by 1 M NaCl (29.87~43.66%). The Cd contents in different plant tissues and cell wall components including pectin, hemicellulose 1 (HC1), hemicellulose 2 (HC2), and cellulose were increased with the increase in Cd concentrations; however, the percentage of Cd concentration decreased in pectin and cellulose. Results of the polysaccharide components such as uronic acid, total sugar contents, and pectin methylesterase (PME) activity showed Cd-induced dose-dependent increase relative to exposure Cd stress. The pectin methylesterase (PME) activity was significantly (p < 0.05) enhanced by 125.78% at 75 μM Cd in root, 105.78% and 73.63% at 100 μM Cd in stem and leaf, respectively. In addition, the esterification, amidation, and pectinase treatment of cell wall and Fourier transform infrared spectroscopy (FTIR) assay exhibited many functional groups that were involved in cell wall retention Cd, especially on carboxyl and hydroxyl groups of cell wall components that indicated that the -OH and -COOH groups of S. nigrum cell wall play a crucial role in Cd fixation. In summary, results of the current study will add a novel insight to understand mobilization/immobilization as well as detoxification mechanism of cadmium in S. nigrum.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (70)
CITATIONS (56)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....