Pyroptosis participates in PM2.5-induced air–blood barrier dysfunction

0301 basic medicine Mice 03 medical and health sciences Blood-Air Barrier Inflammasomes Pyroptosis Animals Particulate Matter Lung Injury Reactive Oxygen Species
DOI: 10.1007/s11356-022-20098-0 Publication Date: 2022-04-18T12:03:14Z
ABSTRACT
Epidemiological studies have shown that particulate matters with diameter less than 2.5 μm (PM2.5) play an important role in inducing and promoting respiratory diseases, but its underlying mechanism remains to be explored. The air-blood barrier, also known as the alveolar-capillary barrier, is the key element of the lung, working as the site of oxygen and carbon dioxide exchange between pulmonary vasculatures. In this study, a mouse PM2.5 exposure model was established, which leads to an induced lung injury and air-blood barrier disruption. Oxidative stress and pyroptosis were observed in this process. After reducing the oxidative stress by N-acetyl-L-cysteine (NAC) treatment, the air-blood barrier function was improved and the effect of PM2.5 was alleviated. The level of pyroptosis and related pathway were also effectively relieved. These results indicate that acute PM2.5 exposure can cause lung injury and the alveolar-capillary barrier disruption by inducing reactive oxygen species (ROS) with the participation of pyroptosis pathway.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....