Classifying sitting, standing, and walking using plantar force data
Plantar pressure
Sitting
DOI:
10.1007/s11517-020-02297-4
Publication Date:
2021-01-08T22:13:17Z
AUTHORS (7)
ABSTRACT
Prolonged static weight-bearing at work may increase the risk of developing plantar fasciitis (PF). However, to establish a causal relationship between weight-bearing and PF, a low-cost objective measure of workplace behaviors is needed. This proof-of-concept study assesses the classification accuracy and sensitivity of low-resolution plantar pressure measurements in distinguishing workplace postures. Plantar pressure was measured using an in-shoe measurement system in eight healthy participants while sitting, standing, and walking. Data was resampled to simulate on/off characteristics of 24 plantar force sensitive resistors. The top 10 sensors were evaluated using leave-one-out cross-validation with machine learning algorithms: support vector machines (SVMs), decision tree (DT), discriminant analysis (DA), and k-nearest neighbors (KNN). SVM and DT best classified sitting, standing, and walking. High classification accuracy was obtained with five sensors (98.6% and 99.1% accuracy, respectively) and even a single sensor (98.4% and 98.4%, respectively). The central forefoot and the medial and lateral midfoot were the most important classification sensor locations. On/off plantar pressure measurements in the midfoot and central forefoot can accurately classify workplace postures. These results provide the foundation for a low-cost objective tool to classify and quantify sedentary workplace postures.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (55)
CITATIONS (18)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....