Enhancement in Thermoelectric Properties of TiS2 by Sn Addition

Solid-state physics
DOI: 10.1007/s11664-017-5913-y Publication Date: 2017-11-20T15:14:39Z
ABSTRACT
A series of Sn added TiS2 (TiS2:Sn x ; x = 0, 0.05, 0.075 and 0.1) were prepared by solid state synthesis with subsequent annealing. The Sn atoms interacted with sulfur atoms in TiS2 and formed a trace amount of misfit layer (SnS)1+m(TiS2−δ)n compound with sulfur deficiency. A significant reduction in electrical resistivity with moderate decrease in the Seebeck coefficient was observed in Sn added TiS2. Hence, a maximum power factor of 1.71 mW/m-K2 at 373 K was obtained in TiS2:Sn0.05. In addition, the thermal conductivity was decreased with Sn addition and reached a minimum value of 2.11 W/m-K at 623 K in TiS2:Sn0.075, due to the impurity phase (misfit phase) and defects (excess Ti) scattering. The zT values increased from 0.08 in pristine TiS2 to an optimized value of 0.46 K at 623 K in TiS2:Sn0.05.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (30)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....