Experimental Study of the Subsystems in a Microscale Additive Manufacturing Process
Microscale chemistry
Microelectronics
Selective laser sintering
Precision engineering
Micrometer
DOI:
10.1007/s11837-018-3223-3
Publication Date:
2018-11-20T18:56:01Z
AUTHORS (5)
ABSTRACT
High-throughput manufacturing of complex 3D architectures for microscale products such as microelectronics is limited by the resolution of existing additive manufacturing processes. This paper presents experimental testing and validation of the major subsystems in a microscale selective laser sintering (µ-SLS) process that is capable of fabricating true-3D metallic micro-architectures with microscale feature size resolutions. In µ-SLS, the part quality and throughput of the sintering process are largely determined by the precision, accuracy, and speed of the subsystems including: (1) the optical subsystem, (2) the global positioning mechanism, (3) the XY nanopositioning stage, and (4) the powder bed dispensing system. This paper shows that each of these subsystems can maintain the sub-micrometer precision and accuracy required to produce metal parts with microscale resolutions. Preliminary sintering results with optimized process parameters show the potential of the µ-SLS process to fabricate complex metal parts with sub-10-μm resolution at high rates.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (18)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....