Recombinant α-Toxin BmK-M9 Inhibits Breast Cancer Progression by Regulating β-Catenin In Vivo

DOI: 10.1007/s12013-025-01711-8 Publication Date: 2025-03-13T11:46:22Z
ABSTRACT
Abstract Screening bioactive compounds from natural sources, including animals and plants, is a valuable strategy for identifying novel anti-tumor agents. α-Toxin BmK-M9, a key component of scorpion venom, has received limited attention regarding its potential anti-cancer effects and underlying mechanisms in breast cancer. This study investigates the effects and mechanisms of BmK-M9 in breast cancer using in vitro experiments and a nude mouse model. mRNA sequencing was performed to identify affected signaling pathways, while Western blotting and immunohistochemistry were utilized to analyze the Wnt/β-catenin signaling pathway. The results demonstrated that BmK-M9 significantly inhibited breast cancer cell invasion and migration in vitro and suppressed tumor growth in vivo. Transcriptomic analysis revealed that BmK-M9 influenced cellular processes related to proliferation, apoptosis, motility, and metabolism. Furthermore, BmK-M9 markedly downregulated β-catenin expression in the Wnt/β-catenin pathway. These findings suggest that BmK-M9 exerts anti-tumor effects in breast cancer by modulating Wnt/β-catenin signaling, highlighting its potential as a promising therapeutic candidate.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (58)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....