Task allocation through fuzzy logic based participant density analysis in mobile crowd sensing
Fuzzy logic
Hybrid greedy algorithm
629
Mobile crowd sensing
Participant density
0202 electrical engineering, electronic engineering, information engineering
600
02 engineering and technology
16. Peace & justice
DOI:
10.1007/s12083-020-01047-5
Publication Date:
2021-01-03T04:20:35Z
AUTHORS (6)
ABSTRACT
Mobile Crowd Sensing (MCS) is an emerging sensing paradigm which employs mobile devices, carried by participants, to sense real-time information. Most previous studies on task allocation in practical applications lack a way of calculating real participant density and making a detailed analysis of it. In this work, first, a fuzzy logic control method is employed to obtain the participant density in different time and space based on participants’ travel time and space. Further, according to the participant density, we can calculate the effective quantity of samples a task requires in a specific time and space. Then, the utility of all tasks can be obtained by considering both the attributes of tasks and the participant-side factors. Last, a hybrid greedy algorithm is proposed to allocate both urgent and non-urgent tasks to ensure the urgent tasks can be allocated as soon as possible and to maximize the utility of all tasks. The simulation results show that the proposed hybrid greedy algorithm is superior to other baselines in terms of the utility of all tasks.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....